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The multigrid method is applied to the pressure iteration in both Eulerian and Lagrangian 
codes, and computational examples of its efficiency are presented. In addition a general 
technique for speeding up the calculation of very low Mach number flows is presented. 
The latter feature is independent of the multigrid algorithm. 

1. INTRODUCTION 

In the simplest numerical schemes for hydrodynamics, all variables are advanced 
explicity in time. In such explicit schemes, the time step is restricted by the Courant 
condition, the limitation that sound signals propagate only a single cell per time step. 
In many situations such explicit schemes are prohibitively expensive. An example is 
the time evolution of the sun. A representative sound speed in the sun is 50 km/set, 
varying, of course, with the depth into the sun. Such a sound speed implies signal 
transit times across the sun of several hours. However, a simulation of the sun’s 
evolution as it proceeds toward the red giant stage would be concerned with time 
scales on the order of a billion years. Such a simulation would be impossible with a 
fully explicit scheme. 

Hence, unless one is interested in resolving phenomena that occur on time scales 
of order AX/C (where cdt < dx is the Courant condition), that is, unless accuracy 
conditions impose particularly stringent time steps one is led to consider schemes 
that treat at least some of the variable in an implicit-in-time fashion. The schemes 
considered in this paper treat the pressure implicitly. Often, of course, other aspects 
of the physical problem require implicit treatment: These may include diffusion 
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processes, chemical reactions, or even, in the above example of the surr, fusion reac- 
tions; these are not treated in this paper, though they are likely amenable to the same 
techniques developed here. 

Implicit treatment of the pressure gives rise in general to a nonlinear elliptic equa- 
tion, which may be solved with a variant of Newton’s method coupled w-ith over- 
relaxation, Given the impressive efficiency of the multigrid method [2], it is natural XI 
consider its application in this framework. In Section 2 we discuss the application of 
the multigrid method to SOLA, a simple Eulerian, incompressible flow code; its 
simplicitly allows one to see more clearly features that might be obscured in more 
complicated codes. In Section 3 we consider the somewhat more complicated code 
SOLA-ICE, an Eulerian compressible flow code; in addition to the application of the 
multigrid method we discuss a technique that speeds up the calculation of very low 
Mach number flows with SOLA-ICE (or indeed with any code employing the ICE 
technique [9]). Finally, in Section 4 we study the problems associated with the applica- 
tion of the multigrid method to a Lagrangian code. Both Sections 3 and 4 have 
computational examples and timing comparisons of the multigrid method with simple 
overrelaxation. Those readers interested in the modified version of SOLA-ICE used 
in the numerical experiments may obtain a listing of the code upon request to the 
second author. 

In order that this paper be reasonably self-contained, let us consider a brief descrip- 
tion of the multigrid method applied to the equation 

Atr = F in 52 = (0, 1) x (0, l), 21 = 0 on 2-Q. (l,kj 

The motivation of the multigrid method is as follows. Traditional iterative techniques 
for Eq. (1.1) such as successive overrelaxation (SOR) do a fine job of reducing the 
high-frequency components of the error but a poor job of reducing the low-frequency 
components. By employing several grids one hopes to solve for the low-frequency 
components on a coarse grid, where the calculation is relatively inexpensive. In this 
context let us define a work unit as the work equivalent to a single iteration on the 
finest grid. This may be many iterations on the coarser levels. We solve for the high- 
frequency components on the finest grid when SOR is efficient. In this regard it turns 
out that ic) = 1.0 (Gauss-Seidel) is the most efficient choice of overrelaxation facto:., 
since it is for this w that one gets the best smoothing rate, that is, the most eficient 
reduction of the high-frequency components of the error, (For a definition of what 
constitutes high-frequency components, see [2].) 

For simplicity we assume that we have only two grids, the coarse grid with mesh 
spacing h, and the fine grid with mesh spacing hf = .&/2, the fine grid being obtained 
from the coarse grid by bisection. One begins with Gau.ss-Seidel on rhe fine grid for 
the equation 

A,?Uf = F. (‘i 2) 

where Ah,p is an approximation to the Laplacian on the fine grid. One iterates until 
convergence “slows down.” Let 18 denote our approximate solution of (1.21, and let 
Yf = Uf - 28 be our error. Slow convergence implies that V has berome smooth:, and 
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can therefore be approximated by a function Vc on the coarse grid. We thus switch to 
the coarse grid, solving there the equation 

dhcVC = IfyF - d,,uf), (1.3) 

where If” is an interpolation from the fine grid to the coarse grid. Equation (1.3) is the 
coarse-grid approximation to the fine-grid equation for Vf, 

d,,Vf = F - dhpf, (1.4) 

derived from Eq. (1.2). Let ue be an approximate solution of Eq. (1.3) obtained, e.g., 
by Gauss-Seidel iterations on the coarse grid, starting with DC = 0. Then we correct 
our approximate solution ur by 

dlew - &cl + IV, (1.5) 

where I,’ is an interpolation operator from the coarse to the fine grid, so that I,@ is an 
approximation to the error Vf. Thus, having liquidated high-frequency components 
of Vf on the fine grid we have efficiently reduced its low-frequency (smooth) com- 
ponents by the process outlined in Eqs. (1.3)-(1.5). This latter process is called the 
coarse-grid correction (CGC). We can then repeat this cycle, iterating on the fine grid 
and applying CGC alternately. 

When we have more than two grids, the approximate solution of (1.3) may itself be 
obtained by combining a relaxation scheme on the coarse grid with CGC on a still 
coarser grid. 

The above mode of the multigrid method is called the correction scheme (CS) [2]. 
In deriving (1.4) from (1.2) we used the linearity of our operator d, . For a general 
nonlinear equation, 

LU=F, 

this cannot be done, and the suggested mode is the full approximation scheme (FAS) 
[2], which we now briefly describe. Again, one begins with Gauss-Seidel (or, better 
for the nonlinear case, N’ewton-Gauss-Seidel) iterations on the fine-grid equation 

When convergence slows down, a coarse-grid correction is made, but now (1.3) is 
replaced by 

L,$J’ = I;(F - L&) + Lh,(I&cf), (1.6) 

and (1.5) is replaced by 

z&w - z&j + I$.2 - Ifcuf), (1.7) 

where UC is an approximate solution of (1.6). It is easy to see that if L is linear, CS and 
FAS are equivalent (UC coinciding with UC + If”z.8). For further details the reader is 
referred to [2]. 
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One final comment is that it is shown in [2] that when the multigrid method is 
applied to (1.2) the convergence factor, independent of the number of unknowns, is 
around 0.55. This is borne out by the examples displayed in Table I. (Note the con- 
stancy of the last column.) This is in contrast to the convergence rate for SOR with 
optimum w applied to (1.2), which is approximately I - 21~ [6]; thus, with SOP., the 
convergence factor deteriorates as the number of unknowns increases. 

11. THE MULTIGRID METHOD APPLIED TO INCOMPRESSIBLE EULERIAN 

The SOLA series of codes has won widespread acceptance as a tool for simulating 
a variety of two-dimensional, time-dependent fluid flows. Because the basic SOL.4 
algorithm is constructed in a simple, straightforward fashion, it has been easy to adapt 
to other problem areas. For example, versions have been written to treat muitiphase 
flow, coupled fluid-structure dynamics, free surfaces, curved boundaries: flow in 
porous media, and even three-dimensional problems. In this section and the next, we 
discuss the implementation of the multigrid method to the pressure iteration for two 
of the simpler members of this SOLA series: basic SOLA. for incompressible flow and. 
SOLA-ICE, which can treat all flow speeds. 

In basic incompressible SOLA the equations solved are: the continuity equation 

and the Navier-Stokes equations 

where the velocity components, (u, v), are in the coordinate directions, (x, ~1); A~ is the 
ratio of pressure to density, the latter being constant in this incompressible limit. The 
external body forces are (g,, , g,) and v is the kinematic viscosity. 

The finite-difference mesh used in SOLA is given in Fig. 1. The pressures are stored 
at cell centers and the velocities at cell sides, as shown in Fig. 2. Tf we lump the convec- 
tion terms and the viscous accelerations, which are evaluated explicitly, into a single 
term on the right-hand side, then the difference equations in SOL.4 that approximate 
(2.1) and (2.2) are 

(2.4) 
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FIG. 1. Finite-difference mesh for SOLA. 

“i-l,j 

“i,j-I 

FIG. 2. Variable storage for SOLA. 
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The superscript, n + I, represents the advanced-time level of the dynamical variables 
After an explicit phase that guesses the advanced velocities, in terms of the old-time 
pressures and provides a starting point for the iteration, the above equations are 
solved by a variant of Newton’s method. 

Equation (2.3) is solved iteratively. For each cell, a pressure change &D~.~ is obtained 
from the relation 

By applying a virtual pressure change, one can derive from (2.3) and (2.4) that i-D;?p=: 
2dr(1/8x’ + ~/LJJ’). The quantity w is merely an overrelaxation factor. 

Having obtained 8~ from (2.5) one uses it to update the velocities; thus, the iterative 
procedure is the following [8] (the tildes represent partially advanced quantities as 

. Here ci,,: = 0 but will be nonzero on the 

Although (2.6) was derived from Newton’s method, it is in fact a restructured 
version of the traditional SOR method for the equation 

where LP and P are given in Eq. (2.4). This fact is implicitly stated in [13 ], and its 
demonstration is given in the Appendix. A measure of how well (2.6) is solved is the 
quantity 
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which, as is also shown in the Appendix, is a multiple of D("); reduction of Dck) below 
some fixed tolerance is the convergence criterion employed in SOLA. 

The decision to use (2.6) instead of SOR for (2.7) is arbitrary in the incompressible 
case; however, in the compressible case of the next section, (2.6) readily allows for a 
generalization of the equation of state for the pressure, whether given analytically or 
by tables. 

Let us consider now the implementation of the multigrid method to (2.6). We need a 
nested sequence of staggered grids, the first two levels of which are depicted in Fig. 3 
and which, for simplicity, we refer to as the fine and coarse grids. 

t 

x 

+ 

x 

4 

FIG. 3. Two grids for multigrid for SOLA. 

The fine-grid p’s are denoted by crosses, and the fine-grid u’s and v’s are denoted 
by horizontal and vertical hash marks, respectively. The coarse-grid p’s are denoted 
by circled crosses. The coarse-grid U’S and v’s lie on intersections of grid lines; and 
intersections where the U’S [v’s] lie are enclosed with circles [squares]. Note that the 
coarse-grid p’s, U’S, and v’s are located at points different from the location of the 
fine grid p’s, U’S, and v’s, so that coarse-grid quantities have to be obtained by aver- 
aging fine-grid quantities. This is not a drawback; in fact, as we explain below, 
averaging is desirable. 

In our discussion of the implementation of the multigrid method, we will consider 
the algorithm for two grids only; this simplifies the description and includes the main 
features of the method. The algorithm we describe corresponds to the “correction 
scheme” of multigrid [2], since this is a linear problem. 
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One begins with (2.6) on the fine grid with w = 1: to provide the best smoothing 
rate, and iterates until convergence slows down. A switch is then made to the coarser 
grid by computing 

and forming O& G Diy by averaging the four nearest D.i.j’s. Each time the iteration 
drops to the coarser grid, II, U, and p are set to zero and the iteration of Eq. (2.6j 
proceeds, except that now di,, = -OF,? in (2.6). 

The way to understand the origin of the term d<,j is to recall that the equation to be 
solved on the fine grid is D:,j =- 0. The residual of this equation at a given stage is 
--D’: and d is simply -IfCDf; the @, L lc, and pc obtained from solving DC = d ac’; as 
corrections to the current uf, uf, and pf and serve to reduce the residual on the &ae 
grid. This is analogous to the procedure described in the Introduction for A$f = -7 

Consider several levels of coarse grids: If the iteration is proceeding at a given level 
of coarseness, two possibilities exist. If a predetermined convergence criterion is met9 
the U’S, U’S, and p’s are interpolated to the next-finer grid and added to their most 
recent values on this finer grid. The iteration then shifts to rbis liner grid. On the other 
hand, if the iteration on the given level of coarseness slows down: the iteration drops 
to the next-coarser level, as outlined above. At the coarsest possible level, the con- 
vergence criterion must be met, or the calculation terminates after some preassigned 
amount of work. 

As mentioned in the discussion of Fig. 3, the construction of the coarse grid from 
the fine grid for the SOLA-like arrangement of variables requires that the dynamical 
variables be located at mesh positions other than those occupied on the fine grid. We 
will refer to this situation as one in which the coarse-grid points are not a subset of the 
fine-grid points; that is, they must be obtained by interpolation. In 121, for Laplace’s 
equation with Dirichlet boundary conditions and for the case in which coarse-grid 
points are a subset of fine-grid points, the right-hand side of Eq. (2.6) on the coarse 
mesh at a given point was given by the residual of this <equation on the fine mesh at 
that point. Brandt discovered later [3] that for Neumann boundary conditions, this 
prescription ieads to a degradation of around 40 7; in the convergence rate. A remedy 
he proposed is to use a weighted average of neighboring residuals. Because in our 
circumstance the coarse-grid points are not a subset of fine-grid points, some such 
averaging is forced upon us. We simply weight the four neighboring residuals of 
Eq. (2.6) equally with weight 0.25. However, near the boundary an unequal weighting 
must be used; otherwise there is a degradation in convergence rate of around 80 ${. 
The reason for this is that the pressures near the left bou.ndary, for examplei are dr? 
away from the boundary and not Ax. 

Another new feature of our treatment concerns the manner of interpolation as one 
moves from the coarse grid to the fme. For definiteness consider the problem of obtain- 
ing the velocity, ZI, in the SOLA configuration, if one imposes a no-slip condition at the 
top boundary. Naive considerations might lead one to extrapolate linearly from the 
neighboring U’S, to obtain a zl-velocitjr adjacent to t’he boundary that leads to the 
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desired no-slip condition. Separate linear interpolation would also be done for the 
v-velocity and the pressure p. 

This straightforward procedure leads to incorrect results for the pressure iteration 
since it in general destroys the relationships (2.4). The effect of this procedure is to 
introduce a perturbation to the right-hand side of (2.7) such that 

is the equation that is being solved instead of (2.7); the effect is the introduction of 
errors that never get smoothed out. A correct interpolation procedure is to interpolate 
the PC’S bilinearly to obtain 6pf and then to perform the replacements 

so that relationships (2.4) are preserved. For the SOLA algorithm the two procedures 
are the same everywhere but at the boundary; however, in some cases (see Section 4), 
they are different everywhere. Careful studies have been performed with SOLA on the 
test problem given in the report, viscous driven flow in a cavity. When the boundary 
problem is correctly handled, the convergence factor for the pressure iteration is a 
little less than the value of 0.6 predicted [2]. 

111.T~~ MULTIGRID METHOD APPLIED TO COMPRESSIBLE FLOWINAN EULERIAN MESH 

We will now consider the application of the multigrid method to compressible flow 
by implementing it in the Eulerian code, SOLA-ICE. Although the equations involved 
are similar to those solved in SOLA, the nonconstant density and the addition of the 
effects of temperature on the pressure through an equation of state introduce certain 
differences into the iteration. For completeness we include the full set of equations as 
solved in SOLA-ICE. 

For mass conservation we write 

The momentum equations are 
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Although they do not concern us directly, note that the compressibility feature 
introduces differences also in the form of the viscous terms. The internal ener-gy 
equation is 

aI 
p(-@++“) 

=.-&+~)+lq~+~) 

+p[2($2+2($j2+(-$~)2-~(~ 

with I = C,T. The equation of state is 

p = F(p, 0 = a2(p - PO) + (Y - 11 p-f. 

As in SOLA one first uses a completely explicit procedure to estimate the advanced- 
time velocities via a discrete version of the momentum equations. The iteration 
procedure described below is then employed to solve the equation of state to some 
tolerance. This yields approximations to the advanced-time pressure and velocity 
fields which are used to advance the density and internal energy via discrete versions 
of the density and internal energy equations. The specific difference equations em- 
ployed are given in [4]. We write 

w = p - F(ji, P) = 0; 

the density p depends on the most advanced volumes, which in turn depend on the 
velocities. The internal energy is updated only by the pdV work. The viscous terms 
are not included in this estimate of I; they are treated purely explicitly. To solve this 
equation we use a variant of Newton’s method approximating the Jacobian, >$V/+, 
numerically. Experience has shown that for most problems the Jacobian need be 
updated only once per cycle, at the end of the explicit guess. 

The storage of the dynamical variables is the same as in SOLA, with the addition 
that p and I are stored at cell centers along with the pressures. The iteration, then, 
proceeds as follows [4]. For each cell one calculates the divergence of the velocity for 
that cell with the most current information available, that is, 
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From the Lagrangian form of the continuity equation one can solve for the density to 
obtain 

This represents the effect of volume changes on the density. The convection is treated 
separately in terms of the advanced velocities. Calculating the change in internal 
energy from work done on the cell (i.e., due to volume changes) gives 

Then from Newton’s method the pressure change can be obtained, yielding 

and finally the pressure 

Pi-i 
4+1) = p(,k), + s,(@ 

1,J 2,1 . 

With the pressure change, the four cell velocities can be updated. 

(3.1) 

(k+l) _ -(?J 2At 
ui,j-l - ‘Vi,j-1 - F QJ~~l(Pr,i + PL1). 

One can combine the above equations to obtain a single equation for the time- 
advanced pressure in terms, solely, of old-time quantities. If we define h = Ax = Ay, 
we may write at convergence that 

(3.2) 

= a2 1 + $t D(k) - PO + (7 - ‘1 (1 + ;; D(k)) I” - At “(yk) ), (3.3) 
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from which it follows that 

LJsing (3.2) and (3.3) yields 

= aepn - a2p,(l + Ar 0”) f (y - I) p1*. (3.4) 

Since this is an elliptic equation, albeit nonlinear, there should be no problem with 
the application of the multigrid method; however, the nonlinearity forces one to use 
the FAS mode (full approximation storage mode) instead of the correction mode [2]~ 
One uses the basic algorithm (3.1) on the finest grid; when convergence slows down 
one switches to the coarse grid. (Again we assume only two grids for ease of exposr- 
tion.) One lays down on the coarse mesh the fine-mesh values of II: c, p, ,o, 1. In our case 
this requires averaging since once again the coarse mesh is not a subset of the fine mesh. 
Having done the averaging onto the coarse mesh one forms the residuals of IV7 

In the interior of the coarse mesh, 

where k, I, i, j are such that the coarse-grid point labeled by k: E is in the center of the 
rectangle formed by the fine-grid points labeled (i, j), (i + l,j)? (i, j + I), (t + 1, 
j + 1). Near the boundaries a different average of fine residuals is used. On the coarse 
mesh one uses the algorithm (3.1) except that now FVc = p - F(p, 4) - Re = 0 is th: 
equation that one wishes to satisfy and accordingly the pressure change is 

When the multigrid method was first tried in SOLA-ICE, it performed weh except 
for spending an inordinately long time on the coarsest grid. The reason for this 
phenomenon is not hard to discover. We take as a simplified model of (3.4) the 
equation 

-Ap + op =finSZ, 
2p 
TV- = 0 on m. 

where CT is a positive constant. A local mode analysis [2] shows that the convergence 
factor of Gauss-Seidel applied to (3.6) can be no better than s = 2/(2 + ah”), the 
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factor by which the constant part of the error is reduced each sweep. As (T -+ 0, s -+ 1. 
Hence for small G, Gauss-Seidel has to work very hard to determine the constant part 
of the solution. It is interesting that this problem does not arise when G = 0, since in 
that case the solution is determined only up to a constant anyway, and the convergence 
rate, which is determined by the frequency nearest 8, = 0, 8, = 0, is quite good, at 
least for coarse meshes. Nor does the problem arise when at least one boundary has 
a Dirichlet condition imposed, since there is more than just 0 to tie down the solution 
in that case. In other words, a basic premise of the multigrid method-that the problem 
is easy to solve on the coarset grid-is violated for (3.6) if cr is small. 

An easy way to avoid the above problem for (3.6) is to employ a direct solution on 
the coarsest grid. This remedy is not easy for Eq. (3.4), however, and in any case it 
puts a limitation on the size of the coarsest grid because of storage considerations, 
especially if one contemplates doing three-dimensional problems. A remedy due to 
Brandt in terms of Eq. (3.6) is to form 

c = C’ (fiCjOBISe + d,c(p~,j)(k“) - G(p;,p))/g CT 
i.j id 

after every Gauss-Seidel iteration on the coarse grid and to add this number to 
(PC)(“) at every grid point. (The prime in the summation denotes a weighted sum. The 
weights are different from 0.25 only near the boundary; using a weighted sum helps 
most when u has jump discontinuities.) This method is derived by substituting (~c)(~~) + 
C for @“)(I’) and solving for C. In the case of (3.5) this leads to the prescription 

i 1 

x’ 1 C = C (f(pF,i 2 rF,j) - pF.j - RF,j)/(l + dt oi”,,j). 
i,i I i,j 

(3.7) 

Fortunately the 1 + dt D contribution can be ignored in (3.7) with little loss in 
efficiency. That is, one can use instead 

( 1 

z’ 1 C = C’ (f($, j 3 IF,j) - jy,i - RF,j). 

i,j i,j 

This is fortunate because equations of state are frequently not known explicitly but 
are given in terms of tables, in which case derivations like the one leading to (3.4) 
cannot be performed. An equation of state given by tables would also preclude 
deriving an equation like (3.4) in general if one were inclined to compute with the 
elliptic equation one was actually solving instead of using (3.1). 

The Mach number of the flow is proportional to al? assuming u&/h M 1; hence, 
this effect is especially pronounced, and the constant determination especially impor- 
tant, for low Mach number flows. 

We ran several comparisons with the single-grid and multigrid versions of SOLA- 
ICE. The one we present here is that of a thermally driven convection in a cylindrical 
can heated on the vertical boundary. This problem is described in more detail in 
[4, p. 151. Since the Mach number in this case is quite small, lo-4 this problem presents 
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a real challenge to SOL&ICE. Indeed, the mesh used in [4] for this problem was only 
8 x 8; for a 12 x I2 mesh the version in [4] takes 1000 iterations to reduce an initial 
error of 1.856 x 10’ to 6.263 x 10-l; since the convergence criterion asked for is 
5.0 x lO-s, it is clear that the version in [4] cannot handle this problem on a mesh 
much larger than 8 x 8. The problem, of course, is that the equation being solved is 
(3.4), witha = 0.0, y = 1.4, At = 5.0 x lo-‘, p0 = 1.0 x IO-‘, alady” z 8.0 x 206, 
so that (At2/p*) 1/p* ‘v 56.0; this is like having u = l/50 in (3.6) The addition of the 
constant described above enables one to perform the calculation on a 12 x I2 grid, 
with about 100 iterations to reduce the error below 5.0 x IV. In our comparison we 
allow the single-grid algorithm to use the addition of the constant since the addition 
of the constant is not inherently connected with the multigrid method and since the 
comparison of the two methods is ludicrous otherwise. In this regard we note chat 
incorporating the addition of the constant routine into a code is a very easy thing to 

o, much easier than incorporating the whole multigrid method. 
With the single-grid method, there is an overrelaxation parameter w to choose; cr: is 

usually chosen in an ad hoc manner and does not bear much resemblance to the 
optimum w for the model problem, dtr = f [lo]. In this case we found the recommen- 
ded ELI of 1.5 of [4] to be nearly optimal for both the 12 x 12 and the 24 x 24 grids 
The comparisons shown in Table I consisted of running the problem for 10 time steps 
and comparing the time for iteration and overall time for the multigrid versus the 
single-grid method. The time step for the 24 x 24 problem was taken to be 2.5 Y 
IO-“, half that of the 12 x 12 problem; the time step was such that the multigrid 
method exhibited a convergence rate of a little less than 0.6. (With a sufficiently smaI1 
time step one would expect only high-frequency errors and a convergence rate as good 
as the smoothing rate, 0.5. In this case the multigrid method would not use the coarse 
grids at all. For a sufficiently large time step, one would expect the quasi-Newton 
iteration’s convergence rate to dominate the process, and in this case one w&d not 
obtain a convergence rate as good as 0.6.) 

TABLE I 

Size 
of 

problem 

12 x I2 
23 x 24 

Fraction of 
Total calculation Fraction of 

Number of Total time spent calculational spent calculation spent 
grids used iterating time Iterating Iterating 
(Multigrid) (MG,!SG) (MG,‘SG) (SG) (MG) 

3 0.35 0.61 0.60 0.34 
4 0.12 0.29 0.80 0.33 

Note that the basic iteration is based on point Gauss-Seidel. If dx were more than 
2 times dy, or vice versa, one would have to modify the algorithm to incorporate line 
Gauss-Seidel in order to recover a good smoothing rate and therefore a good con- 
vergence rate for the multigrid method [2]. 
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A final comment is that the multigrid algorithm employed here is not the only 
possible one. An attractive alternative is the one described in [2, Sect. 6.31; this 
algorithm gives a procedure for solving a problem (Poisson’s equation with the five- 
point operator [2]) to within truncation error in a fixed number (around five) of work 
units. This is more efficient than solving to within a specified tolerance, since the 
tolerance is usually chosen either greater or less than truncation error; if greater, one 
is not getting the accuracy that is possible; if less, one is presumably wasting work. Of 
course, the success of the algorithm in the context of the pressure iteration could be 
determined only empirically. Note, however, than any improvement via the new 
algorithm would be marginal. The present algorithm reduces the fraction of time spent 
in the pressure iteration from a fraction which approaches 1 as the number of un- 
knowns increases to a fraction that remains constant. For the test problem this 
constant was $; hence, even if one reduced the pressure iteration time to zero, this 
would give only 30 % savings in time, and since the test problem is harder than most 
typical problems, the savings would usually not even be as great as 30 “/d. 

IV. THE MULTIGRID METHOD APPLIED TO COMPRESSIBLE 
LAGRANGIAN HYDRODYNAMICS 

Consideration of the application of the multigrid method to Lagrangian hydro- 
dynamics actually precedes the work of the previous sections [5]. This early work 
began with the straightforward application of the multigrid method in a finite-element 
environment; that is, the fine grid was obtained by beginning with a coarse gird and 
successively bisecting it. Following success in this situation the method was examined 
in the context of a Lagrangian grid, in which one is given the fine mesh and has to 
make sense out of a coarser mesh. A naive way of doing this is just to pluck out 
every other line of the fine grid to obtain the coarse grid. 

Thus in Fig. 4, the fine grid is given by solid lines while the coarse grid is given by 
dotted lines. The experiments with the finite-element method used Laplace’s equation 
and piecewise continuous bilinear elements defined on the elements formed by the 
vertices in Fig. 4; the quadratures were performed using four Gauss points. Initially it 
was thought that the interpolation required relatively sophisticated techniques such 
as bilinear interpolation: however, it was discovered that the simplest interpolation 
(in which, for example, E is declared by fiat to be the centroid of quadrilateral ABCD) 
worked just as well if not better. A heuristic explanation of this phenomenon is not 
hard to find. One can view -Au on the distorted mesh as being --V . (DVu) on a 
rectangular mesh with a widly varying D. Since numerical experiments by Brandt 
indicate that the multigrid method performs well even when D is random (but posi- 
tive), the simple interpolation is at least heuristically justified. 

The success of these initial experiments led to the search for an application in a 
Lagrangian hydrodynamics code. The code which was chosen was SALE, a simplified 
version of YAQUI [I]. This code has many features in common with SOLA-ICE. As 
in SOLA-ICE one advances the velocities explicitly and then solves the equation of 
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state implicitly. Now, of course, the cell vertices move with the fluid, and this gives 
rise to distorted meshes. In contrast to SOLA-ICE, the velocities :I and z’ are stored at 
cell vertices. Let us remark that the interpolation from coarse to fine grid is performed 
analogously to the interpolation in SOLA; that is, there are two relationships ana- 
logous to (2.4) which must be preserved, and in this case bilinear interpolation of U: c, 
and p is globally different from interpolating the pressures and using them to preserve 
the relationships analogous to (2.4). 

FIG. 4. Two grids for multigrid for SALE, fine grid given by solid lines, coarse grid bjr dorkd 
lines. 

The equation of state is as in SOLA-ICE and the elliptic equation that is being 
solved at each time step is (3.4). If we view the equation -we are solving as an equation 
on the logical mesh, the coefficients can be wildly varying (if the physical mesh is 
distorted), and the multigrid method requires the coefficients on the coarse grids to 
be obtained by averaging the coefficients on the finest grid. But this averaging process 
is built into our situation since we are forced to average the fine-grid pressures to 
obtain the coarse-grid pressures. 

With so many similarities between SALE and SOLA-ICE, it came as somewhat of a 
surprise to discover that the multigrid method worked no better than SOR in SALE? 
especially in the light of the early successful numerical experiments using the finite- 
element method on Lagrangian meshes. The reason for this failure is apparent if one 
exa,mines the differencing in SALE El]. 
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FIG. 5. Variable storage for SALE. 

To explain this we simplify and consider only a rectangular grid; the variable 
storage is shown in Fig. 5. Since U’S and D’S are stored at cell vertices the divergence Dij 
reduces to 

& (%+l,j+l + Ui+l,j - zli,j+l - &j) + & ('i+l,i+l + ui,i+l - u)i+l,j - Df,j) 

in this special case; that is, averaging is necessary. The updating of u, for example, 
also requires averaging: 

(B(f%,i + Pi-12 + Pi+-1 + Pi-l,i-1)). 

The combined effect is that dp is approximated by the skewed Laplacian: 

Ashkp = & (pi--l+1 + ~i+l.s + Pi+12+1 + Pi--la+1 - 4Pi.A 

where we have taken Ax = Ay = h. As is well known, this operator has the bad pro- 
perty that it leads to two decoupled grids, and the solution on one grid can be quite 
different from the solution on the other. 
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If one considers ,4ikkp =fon the unit square and attempts to solve it by relaxation, 
a local mode analysis of Fourier components of the error shows that the component 
that oscillates in both the x- and y-directions with a half-wavelength equal to the 
mesh spacing is not smoothed at all. This coasting or hourglass instability is common 
to Lagrangian codes. From the point of view of relaxation on a single grid, this is not 
serious since this frequency is inherently present in the solution-another way of 
saying that there are two completely decoupled grids; frequencies in the error near 
this frequency that should be smoothed are smoothed at the same slow rate as Ce- 
quencies near the constant frequency. A basic premise of the multigrid method is 
that high-frequency components of the error can be smoothed efficiently on the 5ce 
grid. This premise is simply not true for the operator L3ik, and since frequencies near 
the highest one are introduced by interpolation, the multigrid method accentuates the 
problem for such differencing. If the grids remained decoupled as a function of time 
one could treat each separately by the multigrid method, but in Lagrangian codes the 
two grids become somewhat connected and yet there are still high frequencies that ere 
not efficiently smoothed. A simple example is to take dq~ = 28~, in which case the 
Laplacian is approximated by the nine-point stencil 

the high-frequency component is not smoothed for this operator. 
As is well known [7], the skewed Laplacian also arises when piecewise continuous 

bihnear elements are used on a rectangular grid if only one Gauss point is -used to 
compute the quadratures. And indeed when some of the finite-element experiments 
were repeated with only one Gauss point, it was found that the muhigrid method 
converges no more rapidly than SOR. 

One possible remedy is to change the differencing in SALE. This hourglass mode is 
usually smoothed away in Lagrangian codes in some ad hoc fashion TG avoid such 
an ad hoc procedure, it is interesting to try an alternate differencing that uses the 
standard five-point Laplacian and hence couples the grids together. In SALE the 
volume changes in the pressure iteration are calculated by forming dt(V . rP)j. By 
exploiting the relationship between u, v, and p, one may write this as At28 . ((lip) 
VP(~)) + AtV . %. One can then difference V . ((l/p) VP) by the standard five-point 
digerence operator; however, as the mesh distorts, mixed derivatives enter, and the 
differencing becomes a nine-point scheme. When the pressure iteration has converged 
to a given tolerance, the new velocities are calculated by a discrete version of 

Since the velocities are updated only once, after the pressure iteration has converged, 
this approach has the advantage that it requires considerably less computer time for 
each iteration. 

@‘/34/3-G 
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When no Lagrangian interfaces are present, so that the material density varies 
smoothy, the above method performs well. When interfaces are present, we found it 
necessary to take smaller time steps with this approach than with the skewed 
Laplacian. For a 12 x 12 grid, for example, and our sample problem below, the new 
method required a time step approximately one-half the time step of the previous 
approach. In this problem it appears that the standard five-point operator also has a 
slightly larger truncation error than the skewed Laplacian. For a very low speed flow 
and a sufficiently large density discontinuity at the material interface this affects the 
accuracy of the calculation and necessitates the smaller time step. As the grid is 
refined the difference in truncation error between the two methods decreases, and they 
approach one another. Tests on a 24 x 24-cell mesh have verified this thesis. 

Let us examine the efficiency of the multigrid approach for the new differencing by 
comparing calculational time as required by multigrid with that required when all 
iterations are done on a fine grid. In this comparison we will apply multigrid in the 
mode that solves for the pressure field first and then upon convergence updates the 
velocity field as outlined above. The test problem we choose is the Rayleigh-Taylor 
instability for almost incompressible flow with a two-to-one density jump at the 
interface. 

Initially the velocity field at the interface is perturbed with the function zi = cos 
(~~c/40). We use a stiffened gas equation of state, p = a”@ - pO) with a” = 2 x 104. 
The Mach number of this problem is of order 5 x 1O-A. Although the problem would 
run more smoothly if the continuous rezone option were involved, we ran the problem 
in the Lagrangian mode to test the effects of mesh distortion on the multigrid method. 
At time t = 25, the mesh distorts sufficiently that the time step shrinks and the problem 
must be terminated. The final mesh configuration appears in Fig. 6. 

FIG. 6. Lagrangian mesh at end of calculation. 

In Table II we give some time comparisons for this problem. We abbreviate multi- 
grid by MG and single grid by SG. Normally the time step in SALE is changed 
dynamically. To make the comparison we ran with a piecewise constant time step. 
That is, the time step was halved at times near t = 15.0, 19.0, and 23.0. Given the 
relative constancy of the ratios in columns 3 and 4 of Table II for the 12 x 12 problem, 
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we felt justified in timing the 24 x 24 problem (which would have ta 
8 times longer to run) only as far as t = 3.0. It is of interest to note that the improve- 
ment in running time is markedly increased as the mesh is refined. This is typical of 
multigrid. 

TABLE II 

Number Fraction of P Fraction @I 
of cells Number of Total time spent Total calculational calculation calculation 

and grids used iterating time spent iterating spent iterating 
rime (multigrid) JMG SG) (MG ,$XYrj 6G) gvK3~ 

12 x 12 
3 

i = 25.0 

12 :< 12 
3 

1 = 24.0 

12. :< 12 
3 

t = 23.0 

12 x 12 
3 

I = 19,O 

12 x 12 
3 

i = 15.0 

12 i: 12 
3 

t = 3.0 

0.67 0.75 0.81 10.73 

0.69 0.75 0.80 0.72 

0.67 

0.72 

0.69 

0.62 0.71 0.64 0.57 

0.75 

0.79 

0.77 

0.79 

0.76 

0.73 

0.75 

0.69 

0.70 

24 x 24 4 0.39 0.51 ‘0.80 0.6:5 
f = 3.0 

As in the SOLA-ICE calculation, a single W, this time 1.4, seemed to be nearly 
optimal for both single-grid calculations. We point out again that the single-grid 
calcu!ation required the addition of the constant routine to be at all competitive with 
the multigrid approach. The success of the multigrid method in the context of Lagran- 
gian hydrodynamics clearly indicates that such an approach would also perform well 
for implicit solutions of the diffusion equation 

on distorted grids. 
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v. CoNCLUsIoN 

It has been demonstrated that the multigrid method can be successfully applied to 
perform the pressure iteration in the Euelerian codes SOLA and SOLA-ICE. In both 
of these codes care was required in the interpolation routine to preserve certain 
functional relationships between the pressure and velocity fields. In SOLA-ICE there 
was the additional difficulty that in the limit of low speed flow, the basic relaxation 
scheme was inefficient; this inefficiency was traced to the slow convergence of the 
constant part of the solution and was remedied by the determination of a constant to 
add to the pressure field to accelerate the convergence of the constant part of the 
solution. We emphasize that the determination of a constant is useful not only in a 
multigrid context but also in the context of a relaxation on a single grid. 

In addition to the above difficulties, the application of the multigrid method to a 
Lagrangian code had the difficulty that the difference equation for the pressure field 
had nonphysical high-frequency components in its solution (the standard hourglass 
instability). These components are inefficiently smoothed by the basic relaxation 
method; hence, the multigrid method is not successful. If, however, one changes the 
difference scheme-a change which can be argued on the grounds of avoiding non- 
physical oscillations in the computed solution-then the multigrid method can also be 
applied to this Lagrangian code. The other interesting feature of the application to a 
Lagrangian code is that one can view the equation to be solved on the Lagrangian 
mesh as an equation with varying coefficients to be solved on a logical mesh. With 
proper averaging this is correct, and the logic of the multigrid method is no more 
complicated than it is for a rectangular mesh. 

APPENDIX 

In this appendix we show that (2.6) is actually equivalent to the traditional SOR 
method. Assume for simplicity that dx = dy = h. Then it is not hard to see that 

(A.3 
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Solving for the divergence from Eq. (A.2) and substituting it into Eq. (A. I) yields 

We may write Eq. (A.3) as 

where B, E, and Fare the appropriate diagonal, lower triangular, and upper trianguk 
matrices as in [IO, pi 581. Now 

(Lb - wE)p” = ((1 - w) D + wF)p” + w(Li.+ A,p”, 
where il/(d,~)~) 4, is the usual five-point discrete LaDlacian; thus . 

(0 - wE)pl = ((1 - w) D + ioF)@’ + ion &PJQ f I? - WE) &pp”; 

From Eq. (2.6), 

(D - WE) 8p& = 4t J!+ (-gj + z&j - ::y.j 7 cp,j-J, 

so that 

(0 - wE)yl = ((1 - 0) D + ozjp” + 0.x; 

consequently 

That is, Eq. (2.6) is equivalent to the traditional SOR iterative method [I I] for the 
equation 
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